Θέλουμε να δούμε γιατί απειλεί ο κβαντικός υπολογιστής να αχρηστεύσει τον τρόπο που κρυπτογραφούμε σήμερα τις διάφορες συναλλαγές μέσω υπολογιστών (π.χ. με τη μέθοδο RSA). Από τα προηγούμενα γνωρίζουμε πως η εκκίνηση γίνεται από δύο πολύ μεγάλους πρώτους αριθμούς (να καταλαμβάνουν ο καθένας τουλάχιστον 2.048 μπιτ ή και περισσότερα), έστω τους p,q. Υπολογίζουμε το γινόμενό τους n=pxq. Από κοντά και το φ(n)=(p-1)(q-1). Το τρίτο στοιχείο που πρέπει να έχουμε ξεκινώντας για την κατασκευή του δημόσιου κλειδιού συνήθως είναι ο 65.537 – εκτός και αν διαιρεί τον φ(n), οπότε θα πάρουμε τον αμέσως μεγαλύτερο πρώτο αριθμό. Με βάση τους n και 65.537 (τον είχαμε συμβολίσει στο προηγούμενο με ε) όπως δείξαμε προκύπτει η κρυπτογράφηση (μετατρέπεται σε έναν άλλον αριθμό) ενός στοιχείου. Για την αντίστροφη διαδικασία, της αποκρυπτογράφησης, χρειαζόμαστε ένα άλλο κλειδί, το ιδιωτικό, που δεν είναι δημόσια γνωστό. Το ιδιωτικό (που έχει και αυτό εκατοντάδες ψηφία) προκύπτει με μια διαδικασία που απαιτεί την παρουσία και τη γνώση του φ(n)=(p-1)(q-1). Και εδώ πλέον αρχίζουν τα πράγματα και γίνονται πια καθαρά. Αφού η αποκρυπτογράφηση εξαρτάται από την παρουσία και τον χειρισμό με κάποιον μαθηματικό τρόπο του ιδιωτικού κλειδιού και αυτό εξαρτάται από το φ(n), άρα και από τη γνώση των p,q είναι αδύνατον να επιστρέψουμε στο μη κρυπτογραφημένο μήνυμα χωρίς τη γνώση του πώς αναλύεται ο n στους δύο αυτούς πρώτους αριθμούς.

Περιεχόμενο για συνδρομητές

Το παρόν άρθρο, όπως κι ένα μέρος του περιεχομένου από tovima.gr, είναι διαθέσιμο μόνο σε συνδρομητές.

Έχετε ήδη
συνδρομή;

Μπορείτε να συνδεθείτε από εδω

Θέλετε να γίνετε συνδρομητής;

Μπορείτε να αποκτήσετε την συνδρομή σας από εδω