Επιστροφή από το διάλειμμα. Τα παιδιά δεν ξέρουν ακόμη τι είναι αριθμός αλλά πλέον από την προηγούμενη «ώρα» έμαθαν ότι σε ένα «κράτος» (λέγεται Τοπολογία) εκεί, δύο «σχήματα» τα θεωρούν ίδια αν μόνο με τέντωμα ή πίεση (κανένα κόψιμο ή κόλλημα άκρων) να μπορεί το ένα να μοιάσει στο άλλο. Ετσι ένα λαστιχένιο τετράγωνο θα θεωρούμε πως γίνεται και τρίγωνο ή κύκλος. Κάτι που δεν επιτρέπεται στο κράτος της… Γεωμετρίας.

Αν όμως σε κάποιο σχήμα «φυτρώνουν» σε σημείο ή σημεία περισσότερα από δύο κλαδιά, όπως στα οχτάρια, στα σχήματα με θηλιές, στο γράμμα Θ, αυτά θα πάνε αλλού. Η κρίσιμη ερώτηση εδώ που μπορεί να την κάνει και ένα παιδί είναι: «Τελικά πόσα σχήματα έχουμε;». Για την απάντηση αρκεί να ζωγραφίσουμε μια απλή γραμμή και σε αυτήν να σχεδιάσουμε επάνω της μια άλλη έστω μικρότερη σε μήκος που να την τέμνει. Ακολουθεί δίπλα και άλλη με δύο τέτοιες, εγκάρσιες στην αρχική, γραμμές. Συνεχίζουμε να αυξάνουμε και να γεμίζουμε το χαρτί ή τον πίνακα. Το συμπέρασμα είναι πως υπάρχουν τέτοια σχήματα ατελείωτα πολλά (δεν έχει νόημα να αναφερθεί εδώ η λέξη «άπειρα» αφού ακόμη δεν έχουν εμφανιστεί οι αριθμοί).

Περιεχόμενο για συνδρομητές

Το παρόν άρθρο, όπως κι ένα μέρος του περιεχομένου από tovima.gr, είναι διαθέσιμο μόνο σε συνδρομητές.

Έχετε ήδη
συνδρομή;

Μπορείτε να συνδεθείτε από εδω

Θέλετε να γίνετε συνδρομητής;

Μπορείτε να αποκτήσετε την συνδρομή σας από εδω