Για να πάρει ο αναγνώστης μια ιδέα για την ευρύτητα των γνώσεων του Σμούλιαν, θα αναφέρουμε δύο παραδείγματα. Το ένα σήμερα και το άλλο την επόμενη φορά. Είναι γνωστό πως έπαιζε στα δάχτυλα τη θεωρία του Γκέντελ για τη μη δυνατότητα να οικοδομηθεί ένα μαθηματικό σύστημα, κάτι σαν μια απόλυτη μηχανή, που αυτόματα θα μπορούσε να αποδείξει αν οποιαδήποτε μαθηματική πρόταση που θα της παρουσιαζόταν ήταν αληθής ή ψευδής. Ουσιαστικά ο Γκέντελ απέδειξε πως οποιοδήποτε σύστημα οικοδομημένο με προτάσεις λογικής δεν θα μπορούσε να υπάρχει χωρίς αμφισβήτηση και χωρίς να καταλήγει σε αντιφάσεις αν δεν στηριζόταν και σε προτάσεις που θα έμεναν αναπόδεικτες από αυτό το σύστημα.

Ε, ο Σμούλιαν ήταν σε θέση και να παρουσιάσει μια πολύ κομψή απόδειξη γι’ αυτό αλλά και να φτιάχνει τους μαθηματικούς του γρίφους στα βιβλία του έτσι ώστε προχωρώντας ο αναγνώστης να προχωρεί ταυτόχρονα και στην κατανόηση αυτής της μάλλον δυσνόητης σε πρώτη προσέγγιση αρχής της μη πληρότητας, κάτι που είχε παραπλανήσει ακόμα και τον ίδιο τον Μπέρτραντ Ράσελ.

Περιεχόμενο για συνδρομητές

Το παρόν άρθρο, όπως κι ένα μέρος του περιεχομένου από tovima.gr, είναι διαθέσιμο μόνο σε συνδρομητές.

Έχετε ήδη
συνδρομή;

Μπορείτε να συνδεθείτε από εδω

Θέλετε να γίνετε συνδρομητής;

Μπορείτε να αποκτήσετε την συνδρομή σας από εδω